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SHARP Lp → Lr ESTIMATES OF RESTRICTED

AVERAGING OPERATORS OVER CURVES ON

PLANES IN FINITE FIELDS

Doowon Koh*

Abstract. Let Fd
q be a d-dimensional vector space over a finite

field Fq with q elements. We endow the space Fd
q with a normalized

counting measure dx. Let σ be a normalized surface measure on
an algebraic variety V contained in the space (Fd

q , dx). We define
the restricted averaging operator AV by AV f(x) = f ∗ σ(x) for
x ∈ V, where f : (Fd

q , dx)→ C. In this paper, we initially investigate
Lp → Lr estimates of the restricted averaging operator AV . As a
main result, we obtain the optimal results on this problem in the
case when the varieties V are any nondegenerate algebraic curves
in two dimensional vector spaces over finite fields. The Fourier
restriction estimates for curves on F2

q play a crucial role in proving
our results.

1. Introduction

In the Euclidean analysis, Young’s inequality for a convolution func-
tion states that

‖f ∗ g‖Lr(Rd) ≤ ‖f‖Lp(Rd)‖g‖Ls(Rd)

if 1
r = 1

p + 1
s − 1 and 1 ≤ p, r, s ≤ ∞. When the function g is replaced by

the surface measure σ on a hypersurface S ⊂ Rd, we have the following
averaging problem over S: for which 1 ≤ p, r ≤ ∞ does the averaging
estimate below hold?

‖f ∗ σ‖Lr(Rd) ≤ CS,p,r,d‖f‖Lp(Rd),
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where the constant CS,p,r,d is indepentent of the functions f ∈ Lp(Rd).
This averaging problem has been well studied (see, for example, [2, 6, 8,
9]). As a variant of the averaging problem, one may ask us to determine
1 ≤ p, r ≤ ∞ such that

‖f ∗ σ‖Lr(S,σ) ≤ CS,p,r,d‖f‖Lp(Rd),

where the constant CS,p,r,d is indepentent of the functions f ∈ Lp(Rd).
We shall name this problem as the restricted averaging problem over S.
In the Euclidean space, this problem has not been yet studied and we
hope analysts to shed insight into this question.

The purpose of this paper is to construct and settle down the re-
stricted averaging problems over algebraic curves on two dimensional
vector spaces over finite fields. We begin by reviewing the notation in
finite fields. Let Fdq be a d-dimensional vector space over the finite field
Fq with q element. Throughout this paper, we assume that the char-

acteristic of Fq is sufficiently large. We endow Fdq with the normalized

counting measure dx. Thus, if f : (Fdq , dx)→ C, then we have∫
Fd
q

f(x) dx = q−d
∑
x∈Fd

q

f(x).

Given an algebraic variety V ⊂ (Fdq , dx), we shall endow the variety
V with the normalized surface measure σ. Recall that the normalized
surface measure σ on V is defined by the relation∫

V
f(x) dσ(x) =

1

|V |
∑
x∈V

f(x).

Notice that the normalized surface measure σ supported on V can be
simply considered as a function on (Fdq , dx) defined by

σ(x) =
qd

|V |
V (x) for x ∈ Fdq .

Throughout this paper, we write V (x) for the characteristic function χV
on the set V , and we denote by |V | the cardinality of the set V.

1.1. Definition of the restricted averaging operator

As an analogue of the Euclidean averaging problem, Carbery-Stones-
Wright ([1]) introduced and studied the averaging problem for algebraic
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varieties in the finite field setting. The averaging problem for the variety
V ⊂ (Fdq , dx) is to decide exponents 1 ≤ p, r ≤ ∞ such that

(1.1) ‖f ∗ σ‖Lr(Fd
q ,dx)

≤ C‖f‖Lp(Fd
q ,dx)

,

where the constant C > 0 is independent of both the finite field size q
and the function f : Fdq → C. In addition, recall that for x ∈ (Fdq , dx),

f ∗ σ(x) =

∫
V
f(x− y) dσ(y) :=

1

|V |
∑
y∈V

f(x− y).

In the finite field case, the averaging problems for several varieties have
been well studied. In particular, the averaging problems for cones,
spheres, and paraboloids have been completely solved (see [3, 5]). How-
ever, what happens to the inequality (1.1) if we replace ‖f ∗ σ‖Lr(Fd

q ,dx)
,

the quantity of the left-hand side in (1.1), by the norm ‖f ∗ σ‖Lr(V,dσ)?
More precisely, we pose the following problem, which shall be named as
the “restricted” averaging problem to an algebraic variety V ⊂ (Fdq , dx).

Problem 1.1. (Restricted averaging problem) Let σ be the normal-
ized surface measure on the variety V ⊂ (Fdq , dx). The restricted aver-
aging problem to V is to determine 1 ≤ p, r ≤ ∞ such that for some
constant C > 0 independent of the field size q, the following inequality
holds:

(1.2) ‖f ∗ σ‖Lr(V,σ) ≤ C‖f‖Lp(Fd
q ,dx)

for all f : Fdq → C.

In this paper, we shall provide complete solutions of Problem 1.1 in
the case when the variety V is a curve on two dimensional vector spaces
over finite fields and when it does not contain any line.

2. Statement of the main result

To precisely state and prove our main result, we need to introduce
notations and definitions. For positive numbers A and B, we shall use
A . B if there is a constant C > 0 independent of the field size q such
that A ≤ CB. We also use A ∼ B to indicate that A . B and B . A.
We shall denote by AV the restricted averaging operator to V . Namely,
if σ is the normalized surface measure on the variety V ⊂ (Fdq , dx) and

f : (Fdq , dx) → C, then we define AV f as the function f ∗ σ whose
domain is restricted to the variety V. As usual, we denote by A∗V the
adjoint operator of the restricted averaging operator to V. Using the fact
that

< AV f, g >L2(V,σ)=< f, A∗V g >L2(Fd
q ,dx)

,
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it is not hard to see that the adjoint operator A∗V is defined as

A∗V g(y) =
qd

|V |2
∑
x∈V

V (x− y)g(x)

where g : (V, σ) → C and y ∈ (Fdq , dx). By duality, the inequality (1.2)
in Problem 1.1 is same as the following:

(2.1) ‖A∗V g‖Lp′ (Fd
q ,dx)

≤ C‖g‖Lr′ (V,σ) for all g : V → C,

where p′ = p/(p− 1) and r′ = r/(r − 1).

Definition 2.1. We write AV (p → r) . 1 if the inequality (1.2) in
Problem 1.1 holds. We also use A∗V (r′ → p′) . 1 to indicate that the
inequality (2.1) holds.

By duality, notice that AV (p→ r) . 1 ⇐⇒ A∗V (r′ → p′) . 1. Next,
we define a nondegenerate curve on F2

q on which we shall work.

Definition 2.2. Given a polynomial Q ∈ Fq[x] with x ∈ F2
q , let

V = {x ∈ F2
q : Q(x) = 0} be an algebraic curve. We say that the

algebraic curve V is nondegenerate if |V | ∼ q and the polynomial Q(x)
does not have any linear factor.

Our main result is as follows:

Theorem 2.3. Let σ be the normalized surface measure on a non-
degenerate curve V ⊂ F2

q . Then we have AV (p → r) . 1 if and only
if (1/p, 1/r) lies in the convex hull of points (0, 0), (0, 1), (1/2, 1), and
(1/2, 1/2).

In the remaining parts of this paper, we focus on proving Theorem
2.3 which provides us of the complete answer to the restricted averaging
problem to any nondegenerate curve on F2

q . As we will see, the proof
of Theorem 2.3 is partially based on the well known extension estimate
(or the restriction estimate) for a nondegenerate curve on F2

q . In Sec-
tion 3, we summarize useful information about the extension problems
for curves in two dimensional space F2

q . Finally, the complete proof of
Theorem 2.3 will be given in Section 4.

3. Review of extension problems for curves

In the finite field setting, Mockenhaupt and Tao ([7]) recently formu-
lated the extension problem for various varieties . In particular, they
completely solved the problem for the parabola in two dimensions and
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the cone in three dimensions. Koh and Shen ([4]) extended the sharp
results for the parabola to general nondegenerate curves in two dimen-
sions. Here, we introduce and use their results. Recall that we denote
by (F2

q , dx) the two dimensional space F2
q equipped with the normalized

counting measure dx. Let (V, σ) be a nondegenerate curve on (F2
q , dx),

where σ denotes the normalized surface measure on V. Since the dual
space of F2

q is isomorphic to the space F2
q as an abstract group, we can

identify the space F2
q with its dual space. For this reason, we may write

F2
q to indicate both the space F2

q and its dual space. However, an impor-

tant point in the discrete Fourier analysis is that the space F2
q is endowed

with the normalized counting measure dx but its dual space is endowed
with the counting measure which shall be denoted by dm. In summary,
we shall use the following notation.

Definition 3.1. (F2
q , dx) means the space F2

q with the normalized

counting measure dx. On the other hand, we shall use (F2
q , dm) to in-

dicate the dual space of (F2
q , dx), where dm is defined as the counting

measure. For simplicity, we use the notation m ∈ F2
q to indicate that

m is an element of the dual space (F2
q , dm) and we write the notation

x ∈ F2
q for an element in the space (F2

q , dx).

Given a function g : (F2
q , dm) → C, the Fourier transform of g, de-

noted by ĝ, is actually defined on the space (F2
q , dx). Namely, we have

ĝ(x) =

∫
F2
q

g(m)χ(−m · x) dm =
∑
m∈F2

q

g(m)χ(−m · x) for x ∈ F2
q ,

where χ denotes a nontrivial additive character of Fq. On the other hand,
given a function f : (F2

q , dx) → C, the inverse Fourier transform f∨ is
defined by

f∨(m) =

∫
F2
q

f(x)χ(m · x) dx = q−d
∑
x∈F2

q

f(x)χ(m · x) for m ∈ F2
q .

In addition, if σ is the normalized surface measure on a curve V ⊂
(F2
q , dx) and f : (F2

q , dx)→ C, then the inverse Fourier transform of the
measure fσ is defined by

(fσ)∨(m) =

∫
x∈V

f(x)χ(m·x) dσ(x) =
1

|V |
∑
x∈V

f(x)χ(m·x) for m ∈ F2
q .

With the notation above, the extension problem for the curve V ⊂
(F2
q , dx) is defined as follows.
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Problem 3.2. (Extension problem) Determine 1 ≤ p, r ≤ ∞ such
that

‖(fσ)∨‖Lr(F2
q ,dm) . ‖f‖Lp(V,σ) for all f : V → C.

In [4], Koh and Shen obtained the following result on the extension
problem for nondegenerate curves V ⊂ (F2

q , dx).

Lemma 3.3. Let σ be the normalized surface measure on a nonde-
generate curve V ⊂ (F2

q , dx). Then we have

‖(fσ)∨‖L4(F2
q ,dm) . ‖f‖L2(V,σ) for all f : V → C.

By duality, Lemma 3.3 implies the following restriction estimate for
a nondegenerate curve V ⊂ (F2

q , dx).

Lemma 3.4. Let σ be the normalized surface measure on a nonde-
generate curve V ⊂ (F2

q , dx). Then we have

‖ĝ‖L2(V,σ) . ‖g‖L4/3(F2
q ,dm) for all g : F2

q → C.

4. Proof of the main theorem (Theorem 2.3)

We first prove the necessary parts for AV (p → r) . 1. Assume that
AV (p→ r) . 1 for 1 ≤ p, r ≤ ∞. Then we must have

(4.1) ‖f ∗ σ‖Lr(V,σ) . ‖f‖Lp(F2
q ,dx)

for all f : F2
q → C.

By duality, we also see that

(4.2) ‖A∗V g‖Lp′ (F2
q ,dx)

. ‖g‖Lr′ (V,σ) for all g : V → C,

where the adjoint operator A∗V is given by

A∗V g(y) =
q2

|V |2
∑
x∈V

V (x− y)g(x).

Taking f = δ0 where we define δ0(x) = 1 for x = (0, 0) and is 0 otherwise,
it follows from (4.1) that

‖δ0 ∗ σ‖Lr(V,σ) . ‖δ0‖Lp(F2
q ,dx)

.

Since ‖δ0 ∗ σ‖Lr(V,σ) = |V |−1 ∼ q−1 and ‖δ0‖Lp(F2
q ,dx)

= q−2/p, we must

have

(4.3)
1

p
≤ 1

2
.
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On the other hand, for some w ∈ V, define δw(x) = 1 if x = w and is 0
otherwise. Now, taking g = δw in (4.2) yields

(4.4) ‖A∗V δw‖Lp′ (F2
q ,dx)

. ‖δw‖Lr′ (V,σ).

Since |V | ∼ q, we obtain by the definition of δw that

(4.5) ‖δw‖Lr′ (V,σ) = |V |−1/r′ ∼ q−1/r′ .

To estimate ‖A∗V δw‖Lp′ (F2
q ,dx)

, we first observe that if x ∈ (F2
q , dx), then

A∗V δw(x) =
q2

|V |2
∑
y∈V

V (y− x)δw(y) =
q2

|V |2
V (w− x).

From this observation, we see

‖A∗V δw‖Lp′ (F2
q ,dx)

=

q−2 ∑
x∈F2

q

∣∣q2|V |−2V (w− x)
∣∣p′1/p′

=

(
q−2

∑
x∈V

(q2|V |−2)p′
)1/p′

= q2−2/p
′ |V |−2+1/p′ .

Since |V | ∼ q, we obtain

‖A∗V δw‖Lp′ (F2
q ,dx)

∼ q−1/p′ .

From this estimation, (4.5), and (4.4), we must have q−1/p
′
. q−1/r

′
.

This clearly implies that we must have

1

p
≤ 1

r
.

Combining this with (4.3), we can conclude that if AV (p→ r) . 1, then
(1/p, 1/r) is contained in the convex hull of points (0, 0), (0, 1), (1/2, 1),
and (1/2, 1/2).

Next, we prove the sufficient conditions for AV (p → r) . 1. First,
since σ is the normalized surface measure on V, it follows that if 1 ≤
r1 ≤ r2 ≤ ∞, then

‖f ∗ σ‖Lr1 (V,σ) ≤ ‖f ∗ σ‖Lr2 (V,σ).

This clearly implies that if AV (p → r2) . 1, then AV (p → r1) . 1 for
1 ≤ p ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞. From this fact, it suffices to prove
that AV (p→ r) . 1 whenever (1/p, 1/r) lies on the line segment joining
(0, 0) and (1/2, 1/2). By the interpolation theorem, it will be enough to
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prove that AV (∞ → ∞) . 1 and AV (2 → 2) . 1. In other words, it
remains to prove the following two inequalities:

(4.6) ‖f ∗ σ‖L∞(V,σ) . ‖f‖L∞(F2
q ,dx)

for all f : F2
q → C.

and

(4.7) ‖f ∗ σ‖L2(V,σ) . ‖f‖L2(F2
q ,dx)

for all f : F2
q → C.

To obtain the inequality (4.6), we have to recall that

‖f ∗ σ‖L∞(V,σ) = max
x∈V
|f ∗ σ(x)| and ‖f‖L∞(F2

q ,dx)
= max

x∈F2
q

|f(x)|.

Then the inequality (4.6) follows immediately from the observation that
for each x ∈ V ,

|f ∗ σ(x)| =

∣∣∣∣∣∣ 1

|V |
∑
y∈V

f(x− y)

∣∣∣∣∣∣ ≤ 1

|V |
∑
y∈V
|f(x− y)| ≤ ‖f‖L∞(F2

q ,dx)
.

Hence, to complete the proof of Theorem 2.3, we only need to justify
the inequality (4.7). To do this, we write

‖f ∗ σ‖L2(V,σ) = ‖ ̂(f∨σ∨)‖L2(V,σ).

By Lemma 3.4 and Hölder’s inequality, it follows

‖f ∗ σ‖L2(V,σ) . ‖f∨σ∨‖L4/3(F2
q ,dm) ≤ ‖f

∨‖L2(F2
q ,dm)‖σ∨‖L4(F2

q ,dm).

By the Plancherel theorem ‖f∨‖L2(F2
q ,dm) = ‖f‖L2(F2

q ,dx)
and by Lemma

3.3 we see that ‖σ∨‖L4(F2
q ,dm) . ‖1‖L2(V,σ) = 1. Therefore, the inequality

(4.7) follows and we complete the proof of Theorem 2.3.
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